×Time: Speigelgasse 5, 05.002 on 2 Jun, 2016
Emmanuel Breuillard (Univ. Münster)
Two reformulations of the Lehmer conjecture
Salem numbers are those numbers (real >1) with at most one conjugate outside the unit disc and at least one on the unit circle. Salem's conjecture asserts that they cannot be too close to 1. More generally, Lehmer's conjecture asserts that given any algebraic unit, which is not a root of unity, the modulus of the product of the conjugates lying outside the unit disc (the Mahler measure) is bounded away from 1. I will present two joint works, one with B. Deroin and the other with P. Varju, in which we give two unrelated ways to reformulate Salem's and Lehmer's conjecture. The first as a uniform spectral gap for a certain family of hyperbolic surfaces, the second as an elementary counting problem in finite fields.