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Abstract. Mahler proved a lower bound for the distance between distinct roots of a
squarefree complex polynomial. We extend his result to packets of tuples of complex
roots and slightly improve a numerical constant. One application of the former aspect
is an upper bound for the transfinite diameter of certain star-shaped compact subsets
of the complex plane.

1. Introduction

Let disc(P ) denote the discriminant of a non-zero polynomial P . For a non-negative
real number t we define log+ t = log max{1, t}. Let P ∈ C[X] r {0} with P = a0(X −
z1) . . . (X − zN) where z1, . . . , zN ∈ C. The Mahler measure m(P ) of P is log |a0| +∑N

j=1 log+ |zj|. It is convenient to define M(P ) = em(P ).
Suppose P is squarefree and assume z, w ∈ C are distinct roots of P . Mahler proved

the separation inequality

(1) |z − w| >
√

3N−(N+2)/2|disc(P )|1/2M(P )−(N−1)

in Theorem 2 [Mah64].
If P has integral coefficients, then |disc(P )| ≥ 1 and so we may omit the discriminant

in the inequality(1). In this setting, much effort has gone into improving the exponent
of M(P ), see for example [BM04] or Chapter 8.1 [?] for an overview of results.

In the current work we investigate such separation inequalities for complex polyno-
mials. Both sides of (1) are invariant under scaling P by a non-zero complex number,
so the exponent of M(P ) cannot be improved in general. Rather our attention shifts
to the factor

√
3N−(N+2)/2. Moreover, instead of working with a pair of roots we con-

sider arbitrary tuples of distinct roots. Our aim is to establish an obstruction to root
clustering.

To formulate our main result we recall that the Barnes G-function satisfies G(1) =
G(2) = 1 and G(m + 2) = 1!2! · · ·m! for all integers m ≥ 1. Let N and m be integers
with N ≥ m+ 1 and m ≥ −1. We define

(2) γN,m =
G(m+ 2)2

G(2m+ 3)

m∏
j=1

(N2 − j2)m+1−j > 0

and find

γN,−1 = γN,0 = 1, γN,1 =
1

12
(N2 − 1), γN,2 =

1

8640
(N2 − 1)2(N2 − 4), . . . .

We will see in (16) that γN,N−1 = N−N .
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Theorem 1. Let P ∈ C[X] r {0} be a polynomial of degree N ≥ 2 without multiple
roots. Suppose z1,0, . . . , z1,m1 , . . . , zn,0, . . . , zn,mn ∈ C are pairwise distinct roots of P
where n,m1, . . . ,mn are integers with n ≥ 0 and m1 ≥ −1, . . . ,mn ≥ −1. Then
(3)

1

2
log |disc(P )| ≤

n∑
l=1

min

{
0,

1

2
log γN,ml +

∑
0≤i<j≤ml

log |zl,j − zl,i| −ml

ml∑
j=0

log+ |zl,j|

}

+
N

2
logN + (N − 1)m(P ).

We may omit terms with ml = −1 in the sum (3), the same holds for similar sums
below.

Let us consider some special cases. Let P and N be as in the theorem.
For n = 0 our inequality states |disc(P )|1/2 ≤ NN/2M(P )N−1 which is a result of

Mahler, see Theorem 1 [Mah64].
For n = 1 and m1 = 1 we use γN,1 < N2/12 to see that our inequality implies

|z − w| > 2
√

3N−(N+2)/2|disc(P )|1/2M(P )−(N−1)

for all distinct complex roots z and w of P .
For n = 1 and m1 = 2 we use γN,2 < N6/8640 to obtain

|z − w||z − u||w − u| > 24
√

15N−(N+6)/2|disc(P )|1/2M(P )−(N−1)

for all pairwise distinct complex roots z, w, and u of P . This improves Schönehage’s
Theorem 4 [Sch06], where, asymptotically in N , the constant 24

√
15 is replaced by

2
√

15.
For n ≥ 1 and m1 = · · · = mn = 1 we obtain

n∏
j=1

|zj − z′j| ≥ (2
√

3)nN−(N+2n)/2|disc(P )|1/2M(P )−(N−1)

for all pairwise distinct complex roots z1, z
′
1, . . . , zn, z

′
n of P . See Mignotte’s Theorem

1 [Mig95] for a more flexible estimate.
The case n = 1 and m1 arbitrary is folklore [BM04] when the factor in front of

M(P )−(N−1) is replaced by an unspecified constant that depends on N .
Our method of proof follows the approach laid out in Mahler’s work [Mah64] which

has found application in work of Mignotte [Mig95], Schönehage [Sch06], and others. The
basic idea is to consider disc(P ) as a Vandermonde determinant and then do column
operations to produce a common factor in many columns. In the current paper we factor
out as far as possible, as suggested by Mignotte in Remark 2 [Mig95]. This factorization
is done in Section 2 and leads us naturally to classical Schur polynomials. A novelty
of our approach is that we replace Hadamard’s Inequality for the absolute value of a
determinant by the more general Fischer Inequality. In addition, we use a determinant
calculation by Frame [Fra79].

It is useful to have an asymptotic upper bound for γN,m. To this end and for all
x ∈ (0, 1) we define

(4) χ(x) = −x log x− x log 4 +
1 + x2

2x
log(1− x2) + log

1 + x

1− x
.
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Then χ is analytic on (0, 1) and extends to a continuous function χ : [0, 1]→ R by setting
χ(0) = χ(1) = 0. As we will see in Section 3, the function χ is concave on [0, 1]. So its
values are non-negative.

Theorem 2. Let P,N, n,m1, . . . ,mn, and the zl,j be as in Theorem 1. Set pl = (ml +
1)/N for all l ∈ {1, . . . , n}. Then

1

2
log |disc(P )| ≤

n∑
l=1

min

{
0, plχ(pl)

N(N − 1)

2
+

∑
0≤i<j≤ml

log |zl,j − zl,i| −ml

ml∑
j=0

log+ |zl,j|

}
+ (N − 1)m(P ) +O(N logN),

the constant implicit in O(·) is absolute and effective.

In the special case where each packet zl,0, . . . , zl,ml is contained in a disk of diameter
ε we obtain the following estimate. The modified function χ(x) + x log x is analytic on
(−1, 1). Its Taylor expansion can be derived from (24) and yields χ(x) ≤ −x log x +(
3
2
− log 4

)
x.

Corollary 3. Let P,N, n,m1, . . . ,mn, and the zl,j be as in Theorem 1. For each l ∈
{1, . . . , n} let εl > 0 and suppose zl,0, . . . , zl,mn lie in a closed disk in C of radius εl. Set
pl = (ml + 1)/N for all l ∈ {1, . . . , n}, p = p1 + · · ·+ pn, and σ = (p21 + · · ·+ p2n)1/2. If
p > 0, then

1

2
log |disc(P )| ≤

(
pχ

(
σ2

p

)
+ σ2 log

(
n∑
l=1

p2l εl
σ2

))
N(N − 1)

2
+ (N − 1)m(P )

+O

(
N

(
logN + max

1≤l≤n
log+ ε−1l

))
,

the constant implicit in O(·) is absolute and effective.

Observe that σ2 ≤ p2 ≤ p in the theorem. Theorem 2 and Corollary 3 are both proved
in Section 3.

In a recent breakthrough, Dimitrov [Dim] proved the Schinzel–Zassenhaus Conjecture.
His method used Dubinin’s Theorem [Dub84] to bound from above the transfinite di-
ameter of a certain star shaped subset of C that Dimitrov calls a Hedgehog. We explain
here how to apply our, ultimately elementary, estimate to deduce an upper bound for
the transfinite diameter as in Dubinin’s Theorem. While our numerical constant is worse
than Dubinin’s, we obtain additional information on the rate of convergence.

Let K be a non-empty compact subset of C. For an integer N ≥ 2 we define

dN(K) = sup
z1,...,zN∈K

( ∏
1≤i<j≤N

|zj − zi|

)2/(N(N−1))

.

It is well-known that dN(K) is non-increasing in N . The transfinite diameter of K is

d(K) = lim
N→∞

dN(K).

We remark that the capacity of K is equal to the transfinite diameter of K, see Theorem
5.5.2 [Ran95].
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For n ∈ N = {1, 2, 3, . . .} the Hedgehog with quills a1, . . . , an ∈ C is

(5) K(a1, . . . , an) =
n⋃
l=1

[0, 1]al where [0, 1]al = {λal : λ ∈ [0, 1]}.

Dubinin [Dub84] proved that d(K(a1, . . . , an)) ≤ 4−1/n max{|a1|, . . . , |an|}.
The transfinite diameter satisfies d(λK) = |λ|d(K) for all λ ∈ C. In addition,

λK(a1, . . . , an) = K(λa1, . . . , λan). So to prove Dubinin’s Theorem one may assume
max{|a1|, . . . , |an|} = 1.

We bound from above the transfinite diameter of the union of a Hedgehog with n
quills and a closed disk of radius 1− 1/n centered at the origin.

Theorem 4. Let n ∈ N and a1, . . . , an ∈ C with max{|a1|, . . . , |an|} = 1. Set K =
K(a1, . . . , an) and S = K ∪ {z ∈ C : |z| ≤ 1− 1/n}. Then

log dN(K) ≤ log dN(S) ≤ −0.39

n
+O

(
log(nN)

N

)
,

the constant implicit in O(·) is absolute and effective. In particular, d(K) ≤ d(S) ≤
e−0.39/n.

Theorem 4 is proved in Section 4.
If al = e2π

√
−1l/n for all l, then the transfinite diameter of K(a1, . . . , an) ∪ {z ∈ C :

|z| ≤ 1− 1/n} equals

(6)

((
1 + (1− 1

n
)n
)2

4

)n

,

by Table 5.1 [Ran95]. The expression inside (·)n converges to (1 + e−1)2/4 = e−0.759... as
n → ∞. We ask whether the bound e−0.39/n for d(S) in Theorem 4 can be replaced by
(6).

We use the big-O notation through this paper. For example, if g is a function defined
on N with values in [0,∞), then O(g) represents a function f : N → R for which there
exists c > 0 with |f(n)| ≤ cg(n) for all n ∈ N. If not stated otherwise explicitly, the
constant c will be understood as absolute.

Acknowledgments. A first iteration of this work was presented at a virtual reading
course on Dimitrov’s proof of the Schinzel–Zassenhaus Conjecture. The course began
at the onset of the current pandemic and the author thanks all participants for creating
a positive environment despite the circumstances. He also thanks Yann Bugeaud for
comments and references. The author has received funding from the Swiss National
Science Foundation project n◦ 200020 184623.
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2. A Generalized Vandermonde Matrix

Let N and m be integers with N ≥ m+ 1 and m ≥ 0. For independents X0, . . . , Xm

we define

(7) AN =


1 1 · · · 1
X0 X1 · · · Xm

X2
0 X2

1 · · · X2
m

...
...

...
XN−1

0 XN−1
1 · · · XN−1

m

 ∈ MatN,m+1(Z[X0, . . . , Xm]).

For N = m+1 we recover a Vandermonde matrix. If z0, . . . , zm ∈ C are pairwise distinct,
then detAN(z0, . . . , zm)tAN(z0, . . . , zm) 6= 0 by the Cauchy–Binet Formula.

The main result of this section is the following proposition. Here and below · denotes
complex conjugation.

Proposition 5. Suppose m ≥ 0 and N ≥ 2 are integers with N ≥ m + 1 and let
z0, . . . , zm ∈ C be pairwise distinct. Set p = (m+ 1)/N and

X =
1

2
log detAN(z0, . . . , zm)tAN(z0, . . . , zm).

(i) We have

X ≤ 1

2
log γN,m +

m+ 1

2
logN +

∑
0≤i<j≤m

log |zi − zj|+ (N − (m+ 1))
m∑
j=0

log+ |zj|.

(ii) We have

X ≤ m+ 1

2
logN + (N − 1)

m∑
j=0

log+ |zj|.

(iii) If max{|z0|, . . . , |zm|} ≤ 1, then we have

X ≤ (m+ 1) logN +
m(m+ 1)

2
log max{|z0|, . . . , |zm|},(8)

the right-hand side is taken as logN for m = 0.

Our approach is to factorize detAN(X0, . . . , Xm)tAN(Y0, . . . , Ym) into
∏

0≤i<j≤m(Xi−
Xj)(Yi−Yj) times a polynomial, the result is recorded in Lemma 9. We recall here some
classical algebraic identities that arises in the classical theory of Schur polynomials.
Our presentation is largely self-contained and we aim to provide elementary proofs or
references at all steps.

Let m ∈ N0 = {0} ∪ N and let I = (α0, . . . , αm) be an (m + 1)-tuple of non-negative
and strictly increasing integers. We define

(9) AI =

 Xα0
0 · · · Xα0

m
...

...
Xαm

0 · · · Xαm
m

 .
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For j ∈ N0 and k ∈ Z the complete homogeneous symmetric polynomial of degree k
in j variables is

hk =
∑

a0,...,aj∈N0

a0+···+aj=k

Xa0
0 · · ·X

aj
j ∈ Z[X0, . . . , Xj].

Observe that hk = 0 if k < 0.
The following lemma is sometimes referred to as the Jacobi–Trudi identity. Below

m ≥ 0 is an integer.

Lemma 6. Let I be as above, we define
(10)

SI = det
(
hαi(X0), hαi−1(X0, X1), · · · , hαi−m(X0, . . . , Xm)

)
0≤i≤m ∈ Z[X0, . . . , Xm].

Then

(11) detAI = SI
∏

0≤i<j≤m

(Xj −Xi).

Proof. We claim that that detAI equals
∏k−1

i=0

∏m
j=i+1(Xj −Xi) times

(12)
det ( hαi (X0),hαi−1(X0,X1),...,hαi−k(X0,...,Xk),hαi−k(X0,...,Xk−1,Xk+1),...,hαi−k(X0,...,Xk−1,Xm) )0≤i≤m

for all k ∈ {0, . . . ,m}. This lemma follows on taking k = m
Our claim holds true for k = 0 as

AI =
(
hαi(X0) · · · hαi(Xm)

)
0≤i≤m .

We proceed by induction and assume that the claim holds for k with k ∈ {0, . . . ,m−1}.
We write (12) in the form (c0, . . . , cm) where c0, . . . , cm are column vectors of length

m+1 with entries in Z[X0, . . . , Xm+1]. We use the fact that the determinant is alternating
in columns. More concretely, we subtract the (k + 1)-st column ck from the (k + 2)-nd
column ck+1, then we subtract the (k + 1)-th column from the (k + 3)-rd column, etc.
until we have exhausted all columns. The induction hypothesis gives

detAI =

(
k−1∏
i=0

m∏
j=i+1

(Xj −Xi)

)
det(c0, . . . , ck, ck+1 − ck, ck+2 − ck, . . . , cm − ck).(13)

Let j ∈ {1, . . . ,m−k} and observe ck+j−ck =
(
hαi−k(X0, . . . , Xk−1, Xk+j)−hαi−k(X0, . . . , Xk)

)
0≤i≤m

and

hαi−k(X0, . . . , Xk−1, Xk+j)−hαi−k(X0, . . . , Xk) =
∑

a0+···+ak=αi−k

Xa0
0 · · ·X

ak−1

k−1 (Xak
k+j −X

ak
k )

= (Xk+j −Xk)
∑

a0+···+ak=αi−k

ak−1∑
a=0

Xa0
0 · · ·X

ak−1

k−1 X
ak−1−a
k Xa

k+j

= (Xk+j −Xk)hαi−k−1(X0, . . . , Xk, Xk+j).
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So we can factor Xk+j − Xk out of each respectively column. We insert into (13) and
obtain

detAI =

(
k−1∏
i=0

m∏
j=i+1

(Xj −Xi)

)
m−k∏
j=1

(Xk+j −Xk)×

× det
(
c0, . . . , ck, hαi−(k+1)(X0, . . . , Xk, Xk+1), . . . , hαi−(k+1)(X0, . . . , Xk, Xm)

)
0≤i≤m

The Vandermonde factor equals
∏k

i=0

∏m
j=i+1(Xj − Xi). So we have verified (12) for

k + 1. �

We come to a further lemma, well-known from the theory of Schur polynomials.

Lemma 7. Let I be as above and let SI be as in (10). The coefficients of SI are non-
negative integers.

Proof. See for example the Lemma in [Pro89] for a sketch of a proof that involves only
basic properties of the determinant. �

We come to any elementary lemma on vanishing of the determinant.

Lemma 8. Let D ∈ Matm+1(C[T ]) and t ∈ C such that the rank of D(t) ∈ Matm+1(C)
is at most r. Then detD ∈ C[T ] has a zero of order at least m+ 1− r at t.

Proof. As C[T ] is a principal ideal domain we can put D into Smith normal form. In
other words, there are matrices U, V ∈ GLm+1(C[T ]) such that UDV is diagonal with
diagonal entries f0, . . . , fm ∈ C[T ]. Note that detU and detV are non-zero constants.
Therefore, the order of vanishing of detD at t equals the order of vanishing of f0 · · · fm
at t. The lemma follows as by hypothesis, at most r among f0(t), . . . , fm(t) are non-
zero. �

We subsume our results in the next lemma. The identity (15) follows from a compu-
tation of Frame. Recall that γN,m was defined in (2).

Lemma 9. Suppose m ≥ 0 and N ≥ 2 are integers with N ≥ m+ 1. Then

(14) detAN(X0, . . . , Xm)tAN(Y0, . . . , Ym) = B
∏

0≤i<j≤m

(Xj −Xi)(Yj − Yi)

where B ∈ Z[X0, . . . , Xm, Y0, . . . , Ym] has non-negative coefficients with

(15) B( 1, . . . , 1︸ ︷︷ ︸
2m+2 times

) = γN,mN
m+1.

Finally, max0≤i≤m{degXj B, degYj B} ≤ N − (m+ 1).

For N = m+ 1 we are in the Vandermonde case and (15) implies

(16) γN,N−1 = N−N .

Proof of Lemma 9. By the Cauchy–Binet Formula, the left-hand side of (14) equals∑
I

detAI(X0, . . . , Xm)tAI(Y0, . . . , Ym),
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where here and below the sum ranges over all (m+1)-tuples I = (α0, . . . , αm) of integers
satisfying 0 ≤ α0 < · · · < αm ≤ N − 1. Lemma 6 implies (14) with

B =
∑
I

SI(X0, . . . , Xm)SI(Y0, . . . , Ym)

and with SI as in (10). Thus B ∈ Z[X1, . . . , Xm, Y1, . . . , Ym]. Moreover, each SI has
non-negative coefficients by Lemma 7 and thus the same holds for B.

The degree of detAN(X0, . . . , Xm)tAN(Y0, . . . , Ym) with respect to Xj is at most N−1.
The degree of the Vandermonde determinant

∏
0≤i<j≤m(Xi −Xj) with respect to Xj is

m. So (14) implies degXj B ≤ N − (m+ 1) and the same bound holds for degYj B.

It remains to justify the value of B at (1, . . . , 1). To this end we let I be as in a sum
before and observe that SI(1, . . . , 1) = det(hαi(1), hαi−1(1, 1), . . . , hαi−m(1, . . . , 1))0≤i≤m
and hαi−j(1, . . . , 1︸ ︷︷ ︸

j+1 times

) =
(
αi
j

)
. So

B(1, . . . , 1) =
∑
I

b2I where b(α0,...,αm) = det

((
αi
j

))
0≤i,j≤m

.

Observe

b(α0,...,αm) =
1

1!2! · · ·m!
det
(
αi(αi − 1) · · · (αi − j + 1)

)
0≤i,j≤m.

A typical entry in the (j+1)-st column of the matrix is of the form αji+(polynomial in αi of degree < j).
So the determinant on the right is a Vandermonde determinant in disguise; for a reference
see Proposition 1 [Kra99]. So

b(α0,...,αm) =
1

G(m+ 2)
det
(
αji
)
0≤i,j≤m

where G is the Barnes G-function and where we use the convention 00 = 1. Thus
(17)

B(1, . . . , 1) =
∑
I

b2I =
detCtC

G(m+ 2)2
with C =


1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2m

...
...

...
...

1 N − 1 (N − 1)2 · · · (N − 1)m


by another application of the Cauchy–Binet Formula. We find the power-sum Hankel
matrix

CtC =
( ∑N−1

k=0 k
i+j
)
0≤i,j≤m .

Note that the top-left entry is N .
Frame, see equation (1.3) [Fra79], computed

(18) detCtC = γN,mN
m+1G(m+ 2)2.

We will reproduce Frame’s argument below. This equality together with (17) implies
(15).

Let i ≥ 0 be an integer and let Bi = T i + · · · ∈ Q[T ] denote the i-th Bernoulli poly-

nomial with constant term Bi(0). Recall that
∑N−1

k=0 k
i = si(N) where si = (Bi+1(T )−
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Bi+1(0))/(i+ 1) ∈ Q[T ], e.g., s0 = T . We define

D =

(
Bi+j+1(T )−Bi+j+1(0)

i+ j + 1

)
0≤i,j≤m

=


s0 s1 · · · sm
s1 s2 · · · sm+1
...

...
...

sm sm+1 · · · s2m

 ∈ Matm+1(Q[T ]).

and find CtC = D(N). The determinant is detD =
∑

σ sign(σ)s0+σ(0)s1+σ(1) · · · sm+σ(m)

where σ ranges over all permutations of {0, . . . ,m}. As deg si+σ(i) = i+σ(i) + 1 we find
deg detD ≤ (m+ 1)2.

Clearly, si(0) = 0 and so T | si for all i ≥ 0. Therefore, Tm+1 | detD. Let r ≥ 1 be an
integer. The specialization D(r) = (

∑r−1
k=0 k

i+j)0≤i,j≤m is the product of an (m + 1)× r
matrix and its transpose. So its rank is at most r and Lemma 8 implies (T − r)m+1−r |
detD for all r ∈ {1, . . . ,m}. Next we use the well-known symmetry Bi(T ) = (−1)iBi(1−
T ) for all i ≥ 0 and Bi(0) = 0 for all odd i ≥ 3 to see si(1 − T ) = (−1)i+1si(T ) for all
i ≥ 1. For all r ∈ {2, . . . ,m + 1} we see −si+j(1 − r) = (−1)i+jsi+j(r) =

∑r−1
k=0(−k)i+j

except when i+j = 0 where −s0(1−r) = r−1. Combining these cases gives −D(1−r) =
(
∑r−1

k=1(−k)i+j)0≤i,j≤m. Note the sums are now of length r−1. So −D(1−r) is a product
of an (m+1)× (r−1) matrix with its transpose. Hence D(1−r) has rank at most r−1.
As above we conclude (T + r − 1)m−r+2 | detD, this time for all r ∈ {2, . . . ,m + 1}.
This statement also holds true for r = 1 as we saw above.

We have proved that detD = λ
∏m

r=1(T−r)m+1−r∏m+1
r=1 (T+r−1)m+2−r with λ ∈ Q[T ].

Comparing degrees using deg detD ≤ (m+ 1)2 we see that λ ∈ Q.
We determine λ as follows. We have si+j = T i+j+1/(i+j+1)+(lower order terms in T )

and T−(m+1)2 detD =
∑

σ sign(σ)(T−(0+σ(0)+1)s0+σ(0)) · · · (T−(m+σ(m)+1)sm+σ(m)). Each
term in this sum is sign(σ)/(i+ j − 1) + (terms of order <0 in T ). We conclude that λ
is the determinant of the (m + 1)× (m + 1) Hilbert matrix (1/(i + j + 1))0≤i,j≤m. The
value λ = G(m+ 2)4/G(2m+ 3) was computed by Hilbert [Hil94].

The computation yields

detCtC = detD(N) =
G(m+ 2)4

G(2m+ 3)

m∏
r=1

(N − r)m+1−r
m+1∏
r=1

(N + r − 1)m+2−r.

Recalling (2) we conclude (18) and therefore the lemma. �

Proof of Proposition 5. For (i) we observe that Lemma 9 and the triangle inequality
imply

B(z0, . . . , zm, z0, . . . , zm) ≤ B(1, . . . , 1)
m∏
j=0

max{1, |zj|}2(N−(m+1)).

So we find

2X ≤ log(γN,mN
m+1) + 2

∑
0≤i<j≤m

log |zi − zj|+ 2(N − (m+ 1))
m∑
j=0

log+ |zj|.

We divide by 2 to obtain the bound in part (i).
For part (ii) we use Hadamard’s Inequality. Indeed, choose N − (m + 1) vectors

in CN that are pairwise orthonormal and orthogonal to the columns of AN(z0, . . . , zm)
with respect to the standard Hermitian inner product on CN . Then apply Hadamard’s
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Inequality, Theorem 13.5.3 [Mir55], to the N ×N matrix obtained by augmenting these
vectors to AN(z0, . . . , zm+1). We find

X ≤ log
m∏
j=0

(1 + |zj|2 + · · ·+ |zj|2(N−1))1/2 ≤
m+ 1

2
logN +

m∑
j=0

(N − 1) log+ |zj|,

as desired.
For part (iii) we recall that e2X =

∑
I |detAI(z0, . . . , zm)|2 by the Cauchy–Binet For-

mula where I runs over tuples (α0, . . . , αm) of integers with 0 ≤ α0 < α1 < · · · < αm ≤
N − 1. As there are

(
N
m+1

)
possible I we get e2X ≤

(
N
m+1

)
maxI |detAI(z0, . . . , zm)|2.

Moreover,

|detAI(z0, . . . , zm)| ≤ (m+ 1)! max
σ
|z0|ασ(0) · · · |zm|ασ(m)

≤ (m+ 1)! max
σ

max{|z0|, . . . , |zm|}ασ(0)+···+ασ(m)

where σ runs over all permutations of {0, . . . ,m}. Observe that α0 + · · · + ασ(m) =
α0 + · · · + αm ≥ 0 + 1 + · · · + m = m(m + 1)/2. As |zj| ≤ 1 for all j we find

max{|z0|, . . . , |zm|}ασ(0)+···+ασ(m) ≤ max{|z0|, . . . , |zm|}m(m+1)/2. Since
(
N
m+1

)1/2
(m+1)! ≤(

N
m+1

)
(m+ 1)! ≤ Nm+1 we conclude X ≤ (m+ 1) logN + m(m+1)

2
log max{|z0|, . . . , |zm|},

as desired. �

Before proving Theorem 1 we state Fischer’s Inequality, a generalization of Hadamard’s
Inequality for determinants.

Lemma 10 (Fischer’s Inequality). Let n ∈ N, let m1, . . . ,mn ≥ 0 be integers, and set
N = (m1 + 1) + · · ·+ (mn + 1). For each l ∈ {1, . . . , n} let Ml ∈ MatN,ml+1(C) and set
M = (M1 · · ·Ml) ∈ MatN(C). Then

detM
t
M ≤

n∏
l=1

detMl
t
Ml.

Proof. Let

(
M ′ ∗
∗ M ′′

)
∈ MatN(C) be a positive definite Hermitian matrix with M ′ ∈

Matr(C) and M ′′ ∈ MatN−r(C). Theorem 13.5.5 [Mir55] states det

(
M ′ ∗
∗ M ′′

)
≤

det(M ′) det(M ′′). If the N × N matrix is merely positive semidefinite, then adding a
positive multiple of the unit matrix leads to a positive definite Hermitian matrix. So
the inequality holds for all positive semidefinite matrices by continuity. Moreover, a
simple induction shows that the analog inequality holds for more than 2 matrices on the

diagonal. As M
t
M is positive semidefinite and Hermitian we conclude

detM
t
M = det

 M1
t

...

Mn
t

 (M1 · · ·Mn) = det

 M1
t
M1 ∗

. . .

∗ Mn
t
Mn

 ≤ n∏
l=1

detMl
t
Ml.

�

Hadamard’s Inequality is the case m1 = · · · = mn = 0.
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Proof of Theorem 1. Let a0 ∈ C r {0} be the leading term of P . Let z0,0, . . . , z0,m0 be
complex roots of P such that z0,0, . . . , z0,m0 , . . . , zn,0, . . . , zn,mn are pairwise distinct and
constitute all complex roots of P . So m0 ≥ −1 and we set p0 = (m0 + 1)/N . Note that
p0 + p1 + · · ·+ pn = 1.

The discriminant of P satisfies

|disc(P )| = |a0|2(N−1) detAN(z0,0, . . . , z0,m0 , . . . , zn,0, . . . , zn,mn)tAN(z0,0, . . . , z0,m0 , . . . , zn,0, . . . , zn,mn),

where AN(z0,0, . . . , zn,mn) ∈ Matn(C) is as in (7). Fischer’s Inequality, Lemma 10, implies

(19)
1

2
log |disc(P )| ≤ (N − 1) log |a0|+

n∑
l=0

Xl

where Xl = 1
2

log detAN(zl,0, . . . , zl,ml)
tAN(zl,0, . . . , zl,ml) for all l ∈ {0, . . . , n} with ml ≥

0 and Xl = 0 if ml = −1; we use γN,−1 = 1 below.
Let l ∈ {0, . . . , n} with ml ≥ 0. On the one hand, Proposition 5(i) gives

(20)

Xl ≤
1

2
log γN,ml +

ml + 1

2
logN +

∑
0≤i<j≤ml

log |zl,i − zl,j|+ (N − (ml + 1))

ml∑
j=0

log+ |zl,j|.

On the other hand, Proposition 5(ii) gives

(21) Xl ≤
ml + 1

2
logN + (N − 1)

ml∑
j=0

log+ |zl,j|.

Combining (20) and (21) yields

(22)

Xl ≤ min

{
0,

1

2
log γN,ml +

∑
0≤i<j≤ml

log |zl,i − zl,j| −ml

ml∑
j=0

log+ |zl,j|

}

+
ml + 1

2
logN + (N − 1)

ml∑
j=0

log+ |zl,j|.

This bound remains true if ml = −1.
We sum (22) over all l ∈ {0, . . . , n} and insert into (19). Finally, recall m(P ) =

log |a0|+
∑n

l=0

∑ml
j=0 log+ |zl,j| and m0 + · · ·+mn = N to conclude the proof. �

3. Proofs of Theorem 2 and Corollary 3

We recall that all implicit constants in O(·) are absolute unless stated otherwise.
Recall that χ was defined in (4) and extends to a continuous function on [0, 1] with

χ(0) = χ(1) = 0. For all x ∈ (0, 1) we have

(23) χ′′(x) =
log(1− x2)

x3
< 0.

So χ is concave on [0, 1] and in particular it takes non-negative values. Moreover, using
the Taylor series of x 7→ log(1− x2) we find

χ′′(x) = −
∞∑
k=1

x2k−3

k
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on (0, 1). Recall that χ(0) = 0 and note that limx→0(χ(x) + x log x)/x = 3/2 − log 4,
this follows easily from (4). So

(24) χ(x) = −x log x+

(
3

2
− log 4

)
x−

∞∑
k=2

x2k−1

k(2k − 2)(2k − 1)

on (0, 1).
We now recall well-known growth properties of the Barnes G-function using Stirling’s

approximation.

Lemma 11. Let m ≥ 1 be an integer, then

logG(m+ 1) =
1

2
m2 logm− 3

4
m2 +O(m log(m+ 1)).

Proof. By definition we have logG(m+ 1) =
∑m−1

j=1 log j!. So we may assume m ≥ 2.

Let a and b be integers with a < b and let f : [a, b]→ R be a non-decreasing continuous

function. We will use that f(a) +
∫ b−1
a

f(x)dx ≤
∑b−1

j=a f(j) ≤
∫ b
a
f(x)dx.

Stirling’s approximation states log j! = j log j − j + O(log(j + 1)). The map x 7→
x log x− x is non-decreasing on x ≥ 1. So

−1 +

∫ m−1

1

(x log x− x)dx ≤
m−1∑
j=1

j log j − j ≤
∫ m

1

(x log x− x)dx.

The lemma follows as x 7→ x2

2
log x− 3

4
x2 is an anti-derivative of x 7→ x log x− x. �

Lemma 12. Let m ≥ 0 be an integer, then

log
G(m+ 2)2

G(2m+ 3)
≤ −(m+ 1)2 log

4(m+ 1)

e3/2
+O(m log(m+ 1)).

Proof. Observe that the left-hand side vanishes for m = 0. Say m ≥ 1, Lemma 11
applied to m+ 1 and 2m+ 2 implies

logG(m+ 2) =
1

2
(m+ 1)2 log(m+ 1)− 3

4
(m+ 1)2 +O(m log(m+ 1))

and

logG(2m+ 3) = 2(m+ 1)2(log 2 + log(m+ 1))− 3(m+ 1)2 +O(m log(m+ 1)).

The lemma follows on taking the difference 2 logG(m+ 2)− logG(2m+ 3). �

Lemma 13. Suppose m ≥ 0 and N are integers with N ≥ m + 2. Set p = (m + 1)/N ,
then
m∑
j=1

(m+ 1− j) log(N2 − j2) ≤ pχ(p)N2 + (m+ 1)2 log
4(m+ 1)

e3/2
+O ((m+ 1) logN) .

Proof. Let a and b be integers with a ≤ b and suppose f : [a, b]→ R is a non-increasing

continuous function. Then
∑b

j=a f(j) ≤ f(a) +
∫ b
a
f(x)dx.
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Let S denote the sum in question. Clearly, f(x) = (m + 1 − x) log(N2 − x2) is
non-negative and non-increasing on [0,m+ 1]. So S ≤

∑m+1
j=0 f(j) and

S ≤ 2(m+ 1) logN +

∫ m+1

0

(m+ 1− x)(log(N − x) + log(N + x))dx

= 2(m+ 1) logN + 2 log(N)

∫ m+1

0

(m+ 1− x)dx+N2

∫ p

0

(p− y) log(1− y2)dy(25)

after a substitution y = x/N . Observe that
∫ m+1

0
(m+ 1− x)dx = (m+ 1)2/2.

The function y 7→ −2py + y2

2
+ (py + 1−y2

2
) log(1− y2) + p log 1+y

1−y is an anti-derivative

of (p− y) log(1− y2). This anti-derivative vanishes at y = 0 and its value at y = p < 1
equals pχ(p)+p2 log p+p2 log 4− 3

2
p2 by (4). This allows us to compute the final integral

in (25) and conclude the proof. �

We can now determine an upper bound for γN,m.

Lemma 14. Suppose m ≥ 0 and N ≥ 2 are integers with N ≥ m+1. Set p = (m+1)/N ,
then

(26)
1

2
log γN,m ≤ pχ(p)

N(N − 1)

2
+O((m+ 1) logN).

Proof. If N = m+1, then the lemma follows from χ(1) = 0 and (16). So we may assume
N ≥ m+ 2. Using the definition (2) we write

log γN,m = log
G(m+ 2)2

G(2m+ 3)
+

m∑
j=1

(m+ 1− j) log(N2 − j2).

Adding the bounds from Lemmas 12 and 13 leads to cancellation

log γN,m ≤ pχ(p)N2 +O((m+ 1) logN).

Observe that pχ(p)N2 = pχ(p)(N(N − 1) +N) = pχ(p)N(N − 1) + (m+ 1)χ(p). The
lemma follows as (m+ 1)χ(p) ends up in the error term of (26); indeed, the continuous
function χ : [0, 1]→ R is bounded from above. �

Proof of Theorem 2. We may safely omit the terms with ml = −1 as then pl = 0 and

χ(0) = 0. Lemma 14 furnishes the estimate 1
2

log γN,ml ≤ plχ(pl)
N(N−1)

2
+ O(plN logN)

if ml ≥ 0. Theorem 2 follows from Theorem 1(i) since p1 + · · ·+ pn ≤ 1. �

Proof of Corollary 3. Let z0, . . . , zm be pairwise distinct members of the closed unit
disk in C. Then

∏
0≤i<j≤m(zj − zi) is the Vandermonde determinant det(zij)0≤i,j≤m.

Hadamard’s Inequality implies
∑

0≤i<j≤m log |zj − zi| ≤ m+1
2

log(m + 1). After trans-
lating and rescaling we can generalize this as follows. Let z0, . . . , zm be pairwise dis-
tinct members of a closed disk in C of radius ε > 0. Then

∑
0≤i<j≤m log |zj − zi| ≤

m+1
2

log(m+ 1) + m(m+1)
2

log ε.
We apply this bound to each of the packets zl,0, . . . , zl,ml and use Theorem 2. This

theorem implies that 1
2

log |disc(P )| is at most

n∑
l=1

(
plχ(pl) +

ml(ml + 1)

N(N − 1)
log εl

)
N(N − 1)

2
+ (N − 1)m(P ) +O(N logN);
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note that
∑n

l=1
ml+1

2
log(ml + 1) ≤ 1

2
N logN . Next ml(ml+1)

N(N−1) = p2l − pl
(N−ml−1)
N(N−1) so we can

estimate ml(ml+1)
N(N−1) log εl ≤ p2l log εl + pl

log+ ε−1
l

N−1 . So 1
2

log |disc(P )| is at most

(27)
n∑
l=1

(plχ(pl) + p2l log εl)
N(N − 1)

2
+ (N − 1)m(P ) +O

(
N logN +N

n∑
l=1

pl log+ ε−1l

)
.

The function x 7→ χ(x) is concave on [0, 1], as we have seen just below (23). Jensen’s
Inequality yields the bound

n∑
l=1

plχ(pl) ≤ pχ(σ2/p).

As x 7→ log x is concave on (0,∞), Jensen’s Inequality also implies

n∑
l=1

p2l log εl ≤ σ2 log

(
n∑
l=1

p2l εl/σ
2

)
.

Recall that p1 + · · · + pn ≤ 1. These two bounds inserted in (27) yield the desired
bound for 1

2
log |disc(P )|. �

4. Application to Hedgehogs and Stars

In this section we use the results from Section 2 to bound from above the transfinite
diameter of a Hedgehog.

Lemma 15. Let m ≥ 0 and suppose z0, . . . , zm lie on a line segment of length ε. Then

(28)
∏

0≤i<j≤m

|zj − zi| ≤ 2m(m+ 1)(m+1)/2
( ε

4

)m(m+1)/2

.

Proof. The left-hand side of (28) is invariant under translating all zi. If we stretch them
by factor 4/ε, then the product is multiplied by (4/ε)m(m+1)/2. So we may assume ε = 4
and that the line segment in question equals [−2, 2]. We may also assume m ≥ 1.

For each i we have zi ∈ [−2, 2], hence there is wi ∈ C r {0} with |wi| = 1 and
wi + w−1i = zi. Let

V =
∏

0≤i<j≤m

|zj − zi| =
∏

0≤i<j≤m

|wj − wi + w−1j − w−1i | =
∏

0≤i<j≤m

∣∣∣∣(wi − wj)(wiwj − 1)

wiwj

∣∣∣∣
=

∏
0≤i<j≤m

|(wi − wj)(wiwj − 1)|.

Now we apply an elementary but powerful determinant formula, see Krattenthaler’s
Lemma 2 [Kra99]. In our case and using |wj| = 1 it implies

V =
1

2

∣∣∣det
(
wij + w−ij

)
0≤i,j≤m

∣∣∣ .
We have |wij+w−ij | ≤ 2 for all i. Hadamard’s Inequality implies V ≤ 1

2
2m+1(m+ 1)(m+1)/2.

�
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Proof of Theorem 4. The first inequality in the theorem follows as dN(K) ≤ dN(L) for
all non-empty compact subsets K ⊆ L ⊆ C and all N ≥ 2. We now prove the bound
for dN(S) where S is the star K(a1, . . . , an) ∪ {z ∈ C : |z| ≤ 1− 1/n}.

Let ε = 1/n ∈ (0, 1]. We will continue to use the symbol ε to emphasize its role in
the proof. Our choice of ε is in part made by convenience. The choice 1.06/n leads to a
slightly better numerical estimates.

Let N ≥ 2 and suppose z1, . . . , zN ∈ S are pairwise distinct. Our goal is to bound

(29) v =
2

N(N − 1)
log

∏
1≤i<j≤N

|zj − zi| =
2

N(N − 1)
log | det(zi−1j )1≤i,j≤N |

from above where the second equality follows as the matrix is of Vandermonde type.
We arrange our points z1, . . . , zN into n + 1 parts as follows. We first collect all

points zj with |zj| ≤ 1 − ε, relabel these points z0,0, . . . , z0,m0 . If |zj| > 1 − ε, fix any
l ∈ {1, . . . , n} with zj ∈ [0, 1]al. We add zj to the l-th part. So for each l ∈ {1, . . . , n}
we obtain points zl,0, . . . , zl,ml on [0, 1]al.

Note that (m0+1)+· · ·+(mn+1) = N and ml ≥ −1 for all l. We set pl = (ml+1)/N .
Fischer’s Inequality, Lemma 10, implies

v ≤ 2

N(N − 1)

n∑
l=0
ml≥0

1

2
log
∣∣detAN(zl,0, . . . , zl,ml)

tAN(zl,0, . . . , zl,ml)
∣∣

where AN(zl,0, . . . , zl,ml) ∈ MatN,ml+1(C) is defined in (7).
In this proof, and as usual, the constant implicit in O(·) is absolute.
Recall that |zl,j| ≤ 1. We apply Proposition 5(i) and (ii) to the terms l ∈ {1, . . . , n}

and part (iii) to l = 0, if ml ≥ 0, respectively. Thus

v ≤p0
m0

N − 1
log(1− ε) +

n∑
l=1

min

{
0, plχ(pl) +

2

N(N − 1)

∑
0≤i<j≤ml

log |zl,j − zl,i|

}
+O

(
logN

N

)
,

(30)

where we used Lemma 14 to bound γN,m from above; a term coming from some l with
ml ≤ −1 can be omitted; we used (m0 + 1) + · · · + (mn + 1) = N to bound the error
term.

Let us treat the terms on the right-hand side separately.

For l = 0 and if ml ≥ 0 we use m0

N−1 = p0 − N−(m+1)
N(N−1) and log(1− ε) ≤ −ε to find

(31) p0
m0

N − 1
log(1− ε) ≤ −εp20 + εp0

N − (m+ 1)

N(N − 1)
≤ −εp20 +O

(
1

N

)
.

Let l ∈ {1, . . . , n} with ml ≥ 0. The points zl,0, . . . , zl,ml lie on a line segment of length

ε. By (28) we find
∑

0≤i<j≤ml log |zl,j − zl,i| ≤ ml(ml+1)
2

log ε
4

+ O((ml + 1) log(ml + 1)).

Recall ml
N−1 = pl − N−(m+1)

N(N−1) and ml + 1 ≤ N . So we get

(32)
2

N(N − 1)

∑
0≤i<j≤ml

log |zl,j − zl,i| ≤ p2l log
ε

4
+O

(
pl

log(4N/ε)

N

)
.
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We plug (31) and (32) into (30) and find

v ≤ −εp20 +
n∑
l=1

pl min
{

0, χ(pl) + pl log
ε

4

}
+O

(
log(4N/ε)

N

)
as p1 + · · ·+ pn ≤ 1.

Next recall that x 7→ χ(x) is concave on [0, 1] as noted below (23). Therefore, so is
x 7→ χ(x) + x log ε

4
and x 7→ min{0, χ(x) + x log ε

4
}. Jensen’s Inequality implies

v ≤ −ε(1− p)2 + pmin

{
0, χ

(
σ2

p

)
+
σ2

p
log

ε

4

}
+O

(
log(4N/ε)

N

)
with p = p1 + · · · + pn = 1 − p0 and σ2 = p21 + · · · + p2n; if p = 0 then the bound holds
when interpreting the term pmin{· · · } as 0.

By (24) we have χ(x) ≤ −x log(4x/e3/2) for all x ∈ (0, 1]. So

v ≤ −ε(1− p)2 − σ2 log+

(
16σ2

e3/2pε

)
+O

(
log(4N/ε)

N

)
.

The Cauchy–Schwarz Inequality implies σ2 ≥ p2/n and thus

v ≤ −ε(1− p)2 − p2

n
log+

(
16p

e3/2εn

)
+O

(
log(4N/ε)

N

)
.

We recall ε = 1/n. So

(33) v ≤ − 1

n

(
(1− p)2 + p2 log+

(
16p

e3/2

))
+O

(
log(nN)

N

)
.

If p < e3/2/16 = 0.2801 . . ., then

(34) v ≤ − 1

n

(
1− e3/2

16

)2

+O

(
log(nN)

N

)
≤ − 1

2n
+O

(
log(nN)

N

)
.

If p ≥ e3/2/16, then we can replace log+ by log in (33) and conclude

v ≤ −f(p)

n
+O

(
log(nN)

N

)
where f(p) = (1− p)2 + p2 log

(
16p

e3/2

)
.

The second derivative of x 7→ f(x) is log(28e2x2). So f is convex (0.1,∞). As f ′(0.487) <
0 < f ′(0.488) the derivative f ′ has a zero p0 ∈ [0.487, 0.488]. Thus f(p) ≥ f(p0). Using
that x 7→ x2 log(16xe−3/2) is increasing on (e/16,∞) ⊇ (0.2,∞) we obtain f(p) ≥
f(p0) ≥ (1− 0.488)2 + 0.4872 log(16 · 0.487e−3/2) > 0.39. So

(35) v ≤ −0.39

n
+O

(
log(nN)

N

)
.

Regardless of the size of p we have (35) by (34).
As z1, . . . , zN ∈ S are pairwise distinct, but otherwise arbitrary, we conclude

dN(S) = sup
z1,...,zN∈K

2

N(N − 1)
log

∏
1≤i<j≤N

|zj − zi| ≤ −
0.39

n
+O

(
log(nN)

N

)
.

Taking the limit N →∞ yields log d(S) ≤ −0.39/n, as desired. �
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5. Algebraic Number of Small Height

We conclude this paper by making some remarks on algebraic numbers of small height.
Consider an infinite sequence of algebraic numbers of absolute logarithmic Weil height
tending to 0. Bilu’s Theorem implies that the complex Galois orbits equidistribute
towards the Haar measure on the unit circle. In this section we explore some consequence
of our estimates towards algebraic numbers of small height.

Let α be an algebraic number. There is a unique irreducible element P of Z[X] that
vanishes at α and has positive leading term. The absolute logarithmic Weil height h(α),
or just height, of α is m(P )/ degP ; recall that m(P ) is the Mahler measure of P .

We will abbreviate N = degP and assume N ≥ 2.
In what follows we will think of h(α) as being small.
Let ε ∈ (0, 1] and n ∈ N. For each l ∈ {1, . . . , n} let Dl be a closed disk in the complex

plane of radius at most ε. We will assume that all complex roots of P lie in
⋃n
l=1Dl.

We fix for each complex root z of P an l ∈ {1, . . . , n} with z ∈ Dl; this l may not be
unique. Let ml + 1 be the number of such roots assigned to l, so ml ≥ −1. We also set
pl = (ml + 1)/N and observe p1 + · · ·+ pn = 1.

This assignment induces a partition as in Corollary 3 with ε1 = · · · = εn = ε. Note
that p = 1 and |disc(P )| ≥ 1 as P ∈ Z[X] is squarefree. In the conclusion of Corollary 3
we divide by N(N − 1)/2 and find

0 ≤ χ(σ2) + σ2 log ε+ 2h(α) +O

(
log(N/ε)

N

)
where σ = (p21 + · · ·+ p2n)1/2.

We use (24), rearrange, omit the sum over k, and deduce

σ2 log

(
4σ2

e3/2ε

)
≤ 2h(α) +O

(
log(N/ε)

N

)
.

The Cauchy–Schwarz Inequality implies σ2 ≥ 1/n. Thus

(36) σ2 log

(
4

e3/2nε

)
≤ 2h(α) +O

(
log(N/ε)

N

)
.

Let us assume that nε < 4e−3/2 = 0.8925206 . . . and write nε ≤ 4e−3/2e−κ with κ > 0.

Thus σ2κ ≤ 2h(α) + O
(

log(N/ε)
N

)
. We have σ2 =

∑n
l=1 p

2
l = 1

n
+
∑n

l=1(pl −
1
n
)2 and

therefore

(37)
1

n
+

n∑
l=1

(
pl −

1

n

)2

≤ 2

κ
h(α) +O

(
log(N/ε)

κN

)
.

Consider a sequence of algebraic numbers α with h(α)→ 0 and N = [Q(α) : Q]→∞.
Suppose that all complex Galois conjugates of α lie in

⋃n
l=1Dl. We allow n and ε to vary

along this sequence subject to nε ≤ 4e−3/2e−κ < 1 with fixed κ > 0 while also assuming
that log(N/ε)/N → 0 as N → 0. Then we conclude two things from (37). First, n→∞,
i.e., the number of disks of radius ≤ ε required to cover all Galois conjugates of α tends

to 0. Second, the normalized variance
∑n

l=1

(
pl − 1

n

)2
tends to 0. This means that each

disk Dl get its fair share of Galois conjugates on average.
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Bombieri and Zannier obtain a non-archimedean result in the spirit of (37), see The-
orem 3 [BZ01]. They used their height inequality to exhibit fields of algebraic numbers
that do not contain any elements of sufficiently small positive height.

Let S be a non-empty and bounded subset of C. For ε > 0 let n(S, ε) denote the
minimal number of closed disks of radius ε needed to cover S. The upper box dimension
of S is

dimbox(S) = lim sup
ε→0+

log n(S, ε)

− log ε
.

It makes not difference if one takes disks of radius ε or boxes of side length ε.
For any subset S ⊆ C let S(Q) denote the set of algebraic numbers in C whose Galois

conjugates all lie in S.

Theorem 16. Let S be a non-empty and bounded subset of C with dimbox(S) < 1. There
exists δ = δ(S) > 0 such that if α ∈ S(Q) then h(α) ≥ δ or h(α) = 0. Moreover, the
second case occurs only finitely often.

Proof. By hypothesis there exists d ∈ (0, 1) with n(S, ε) ≤ ε−d for all sufficiently small
ε > 0. So S is covered by n = n(S, ε) ≤ ε−d closed disks Dl of radius ε. We will fix such
an ε soon.

Let α ∈ S(Q) with N = [Q(α) : Q]. If N = 1, then h(α) ≥ log 2 or h(α) = 0; the
latter case only happens for α ∈ {0,±1}. So we may assume N ≥ 2.

We use the notation introduced around (36) and apply this bound. In our case it
implies σ2 log(4e−3/2εd−1) ≤ 2h(α) +O(log(N/ε)/N).

We now fix ε ∈ (0, 1] small enough to ensure 4e−3/2εd−1 ≥ e2, this is possible as
d < 1. Therefore, σ2 ≤ h(α) +O(log(N/ε)/N). The Cauchy–Schwarz Inequality implies
σ2 ≥ 1/n ≥ εd ≥ ε. So ε ≤ h(α) +O(log(N/ε)/N).

Having fixed ε we find h(α) ≥ ε/2 for all sufficiently large N . So we in the first case of
the theorem. If N = [Q(α) : Q] is bounded, then we apply Northcott’s Theorem which
states that a set of algebraic numbers of bounded height and degree is finite. So h(α)
cannot be a arbitrarily small positive real number and it is 0 only finitely often. �

We conclude this section by making some remarks on the previous theorem.
The theorem above does not hold when replacing the upper box dimension by the

Hausdorff dimension. Indeed, the group of roots of unity in C is a countable infinite set
and therefore has Hausdorff dimension 0. However, its elements have height 0.

There is a bounded set of upper box dimension strictly less than 1 than contains
infinitely many rational numbers. Indeed, the Cantor set consists of real numbers in
[0, 1] which have a ternary expansion omitting 1. The Cantor set contains all positive
powers of 1/3 and is known to have upper box counting dimension (log 2)/(log 3) < 1.

There is a bounded set of upper box dimension strictly less than 1 that contains all
Galois conjugates of infinitely many algebraic integers of bounded height. Indeed, for
all complex c of sufficiently large modulus, the filled Julia set Kf of f : z 7→ z2 + c is
a compact set of Hausdorff dimension < 1. Moreover, its Hausdorff dimension equals
its upper box counting dimension if |c| is large enough. We fix such a c ∈ Z. It is
well-known that f admits infinitely many preperiodic points. All preperiodic point of f
lie in Kf and so do their Galois conjugates. Finally, the Call–Silverman height vanishes
on all preperiodic points and differs from the height by a bounded function. So the
preperiodic points in question have bounded height.
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